Exercise 34

(a) If $f(x)=x+1 / x$, find $f^{\prime}(x)$.
(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f and f^{\prime}.

Solution

Calculate the derivative of $f(x)$ using the definition.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)+\frac{1}{x+h}\right]-\left(x+\frac{1}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{x}{x(x+h)}-\frac{x+h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{-h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{h}{h}+\frac{-h}{h x(x+h)}\right] \\
& =\lim _{h \rightarrow 0}\left[1-\frac{1}{x(x+h)}\right] \\
& =1-\frac{1}{x(x)} \\
& =1-\frac{1}{x^{2}}
\end{aligned}
$$

Below is a graph of $f(x)$ and $f^{\prime}(x)$ versus x.

